If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-3t^2=0
a = -3; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-3)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-3}=\frac{0-2\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-6} =-\frac{\sqrt{6}}{-3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-3}=\frac{0+2\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-6} =\frac{\sqrt{6}}{-3} $
| 2x2-x-3=-x+5 | | (x+5)(x-4)=30 | | x2-3=-x+3 | | -2(1+7a)-2a=-130 | | x-0=2x-3 | | Z^2-3z+7=0 | | 4(w-1)=7w+20 | | 6x-3(8x-4)=138 | | n+10=14-(4-n) | | n+10=14-(4-n) | | 1y+10=2y+7 | | 3(x2-1)=4x-9 | | (3x+4)(2x-1)+4=0 | | 7a+2=9a^2 | | 21+2(-x-3)+4=-3x+3(x-2) | | 3p+3/14=6/7 | | 5a+5-3a=-7 | | 1/10x^2-13x+3=0 | | 2x+3=7x-6x | | 2x2=4-6= | | 0.1x^2-13x+3=0 | | 4x-7+4(2+x)=3x+10-5x | | (2x+2)=(x+1) | | 12x+8-11+x=9x-6+x | | 5x^2+3x+(9/4)=0 | | (5x^2+3x+(9/4))=0 | | (5x^2+3x+9/4)=0 | | 5-1/2x=1/8× | | 0,6x-1,4=-1,3x+9,6 | | 4(3x+2)-11+x=3(3x-2)+x | | 3x+9x=30 | | 3x-4(x+1)=0 |